Assimilation of Compact Phase Space Retrievals (CPSRs) in WRF-Chem/DART

Arthur P. Mizzi*, Avelino Arellano+, David Edwards*, and Jeffrey Anderson#
(mizzi@ucar.edu)

IWAQFR: Data Assimilation September 1 – 3, 2015 College Park, MD

- * NCAR/Atmospheric Chemistry Observations and Modeling Laboratory, Boulder, CO
- + Univ. of AZ/Department of Atmospheric Sciences, Tucson, AZ
- # NCAR/Institute for Mathematics Applied to Geosciences, Boulder, CO

Overview

- ➤ Assimilation of trace gas retrievals
- ➤ Phase space retrievals
- ➤ Compact phase space retrievals (CPSRs)
- ➤ WRF-Chem/DART
- Case study: Assimilate CPSRs for CONUS June 2008
- ➤ Summary and Conclusions

Assimilation of Trace Gas Retrievals

- ➤ Air quality is an important national and international issue.
- ➤ Air quality forecasts require observations.
- ➤ In situ observations are spatially and temporally sparse.
- ➤ Remotely sensed satellite observations are relatively abundant.
- > Question whether to assimilate radiances or retrievals.
- Retrievals are inverse solutions to the RTE that identify the "optimal" trace gas profile that yields the observed radiance profile.

Assimilation of Trace Gas Retrievals

> The retrieval equation:

$$y_r = Ay_t + (I - A)y_a$$

- > Challenges with assimilating retrievals:
 - i. Data sets have large amounts of data with low information content per observation.
 - ii. Observation error covariance contains off-diagonal terms.
 - iii. The retrievals contain contributions from the retrieval prior.
- ➤ Prior work has focused on ii and iii. Relatively little work on i. Joiner and Da Silva (1998) and Migliorini et al. (2008) are two such papers.

Phase Space Retrievals

- ➤ Joiner and Da Silva (1998):
 - First proposed using information content to reduce the number of retrieval observations
 - Project retrievals onto null space of different operators $[(I-A), E_s, \text{ and } E_m]$ called "null space filtering."
- ➤ Migliorini et al. (2008):
 - Remove retrieval prior contribution with "quasi-optimal" subtraction

$$y_r - (I - A)y_a = Ay_t$$

• Neglect quasi-optimal retrievals whose forecast error variance was smaller than the corresponding observation error variance.

Compact Phase Space Retrievals

- ➤ Mizzi et al. (2015):
 - Notice that in

$$y_r - (I - A)y_a = Ay_t$$

the left singular vectors of A span its range.

- A is singular so the "quasi-optimal" retrieval projects completely onto the leading left singular vectors.
- That projection compresses the system but the transformed error covariance may not be diagonal.
- So rotate/diagonalize the system with an SVD of the transformed observation error covariance.
- Compression depends on difference between the number of rows and rank of A. (\sim 66% MOPITT and \sim 80% IASI)

CPSR Properties

CPSR Properties

WRF-Chem/DART (see Poster Session)

- ➤ WRF-Chem is WRF with online chemistry that simulates emission, transport, mixing, and chemical transformation of atmospheric trace gases and aerosols.
- ➤ WRF-Chem developed and maintained by NOAA/ESRL, DOE/PNNL, and NCAR/ACD.
- > WRF-Chem added as a model in DART (available to community as β -test).
- ➤ **DART** Data Assimilation Research Testbed developed and maintained by NCAR/DAReS.
- ➤ **DART** is a flexible software environment for exploring different assimilation methods, models, and observations.

Experimental Setup

- ➤ WRF-Chem/DART cycling with conventional meteorological observations and MOPITT and IASI CO retrieval profiles.
- > 6 hr cycling (00Z, 06Z, 12Z, and 18Z)
- CONUS grid with 101x41x34 grid points and 100 km resolution
- ≥ 20-member ensemble
- Results for June 1 30, 2008 cycling experiments (112 cycles)
- Three experiments:
 - ♦ Exp 1: PREPBUFR conventional obs
 - ♦ Exp 2: CO retrieval profiles and PREPBUFR conventional obs
- ♦ See Mizzi et al. (2015) GMD for details.

Experimental Results

Vertical Profiles

Verification

Summary and Conclusions

- \triangleright WRF-Chem/DART available as β -test release.
- ➤ Assimilation of MOPITT CO improves CO analysis and forecast.
- Assimilation of MOPITT CO CPRSs performed as well of better that assimilation of retrievals.
- ➤ Use of CPSRs reduced computational costs by ~35%.
- ➤ CPSRs can be obtained for retrievals from any optimal estimation algorithm and can be used with correlated or uncorrelated errors.

